When Texas literally froze this February, some blamed the blackouts that left millions of Texans in the dark on the wind turbines. Others blamed them on the gas-fired power plants.
The truth isn’t so politically simple. In truth, both wind turbines and gas plants froze because of the abnormal weather.
And when Warren Buffet’s Berkshire Hathaway said it had plans for additional generation capacity in Texas, it wasn’t talking about wind turbines. It was talking about more gas-fired power plants—ten more gigawatts of them.
While the Texas Freeze hogged headlines in the United States, across the Atlantic, the only European country producing any electricity from solar farms was teeny tiny Slovenia. And that’s not because Europe doesn’t have any solar capacity—on the contrary, it has a substantial amount. But Europe had a brutal winter with lots of snow and clouds. Despite the often-referenced fact that solar panels operate better in cooler weather, sub-zero temperatures are far more drastic than cool. This is not even to mention the cloud cover that did not help.
If we go back a few more months, there were the California rolling blackouts of August that state officials and others insisted had nothing to do with the state’s substantial reliance on solar and wind power. The state’s own utilities commission disagrees.
This is what the California Public Utilities Commission and the state’s grid operator, CAISO, said in a joint letter to Governor Newsom following the blackouts:
“On August 15, the CAISO experienced similar [to August 14] supply conditions, as well as significant swings in wind resource output when evening demand was increasing. Wind resources first quickly increased output during the 4:00 pm hour (approximately 1,000 MW), then decreased rapidly the next hour. These factors, combined with another unexpected loss of generating resources, led to a sudden need to shed load to maintain system reliability.”
Further in the letter, CPUC and CAISO also had this to say:
“Another factor that appears to have contributed to resource shortages is California’s heavy reliance on import resources to meet increasing energy needs in the late afternoon and evening hours during summer. Some of these import resources bid into the CAISO energy markets but are not secured by long-term contracts. This poses a risk if import resources become unavailable when there are West-wide shortages due to an extreme heat event, such as the one we are currently experiencing.”
These lengthy quotes basically say one thing—and it is a well-known thing: wind and solar power generation are intermittent, and this intermittency is a problem. This problem continues to be neglected in the mainstream renewable energy narrative with only occasional talk about storage capacity. The reason? Battery storage is quite expensive and will increase the cost of solar and wind generation. Hence the blackout risk as renewable power capacity continues to rise.
“People wonder how we made it through the heat wave of 2006,” said CAISO’s chief executive Stephen Berberich last August. “The answer is that there was a lot more generating capacity in 2006 than in 2020…. We had San Onofre [nuclear plant] of 2,200 MW, and a number of other plants, totalling thousands of MW not there today.”
In a recent article for Forbes, environmentalist Michael Shellenberger cited both the Texas Freeze and the California August 2020 outages as examples of why there should be less solar and wind capacity added to the grid, not more: because the more renewable capacity there is, the higher the risk of blackouts.
Solar and wind are weather-dependent sources of electricity and, as the events in Texas and California show, they are unreliable, Shellenberger, who is the founder and president of Environmental Progress, a research nonprofit, wrote. He also pointed to Germany, where an audit of the country’s energy transition plans showed that some of the projections were overly optimistic, while others were outright implausible.
People in Germany, like people in California and New York, by the way, are paying more for electricity than people in places that are less dependent on renewable energy. While some may be perfectly fine with paying more for cleaner electricity, not everyone can afford it over the long term. And affordable energy is crucial for civilization, Shellenberger notes.
Affordability is one essential requirement for energy if it is to contribute to the improvement of living standards, even if we take economic growth out of the equation since it appears to be very passé these days amid the fight against climate change. Yet affordable energy is one of the driving forces of equality among different communities across the world. And so is reliable energy.
Affordability and reliability, then, are the two things good energy sources need to be. Solar and wind—unlike hydropower, which is also a renewable source—can only be one of these two things, and that’s if there is no storage included. They can be affordable, as we are often reminded. Yet, sadly, they cannot be reliable.
This means that the more billions are poured into boosting renewable capacity, the greater the risk of further blackouts. Perhaps at some point, if wind and solar become the main sources of electricity, authorities will need to institute planned outages.
To be fair, the limited availability of electricity would have an incredibly positive effect on greenhouse gas emissions. That is, if the limitation comes from the limited amount of energy generated rather than from excessive exports.
In the end, from an environmental perspective, an overwhelming reliance on wind and solar, and the planned blackouts that are quite likely to result from this reliance, would go a long way towards the Paris Agreement targets.
Of course, it would cost people certain inconvenience and loss of economic—and scientific, and medical—activity. But if priority number one is fighting climate change, then the end must surely justify the means.